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Stereogenic P-Trisubstituted Phosphorus by crystalline derivatives were obtained starting from the Whitesell
Crystallization-Induced Asymmetric auxiliary 13,19 or from (R)-pantolactoneXb). For1a, conver-
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Chiral phosphines have been prepared by a variety of o CGH‘,,_A,L
methods, most of which involve the displacement of a chiral \O N
leaving group from stereogenic phosphorus by an alkylmetal CeHg™ 0-MeOCeH,

reagent? Control of phosphorus configuration has also been

achieved using a non-covalently bound chiral auxiliaryVe . ) o
report an alternative approach based on the first examples ofSion to the chloroformat2awith COCl/toluene+ 2,6-lutidine

crystallization-induced asymmetric transformation (AT) at ste- followed by lithium o-anisylphenylphosphidé*?produced the

reogenic phosphorus having three carbon substitdéntBhe alkoxycarbonylphosphine8a and 4a (ca. 1:1 diastereomer
potential of this method is illustrated in a practical synthesis of Mixture). A similar procedure from pantolactofib afforded
phenylp-anisyl)methylphosphine (PAMP). the chloroformate2b, but the phosphide coupling step gave

In principle, the AT phenomenon can be used to convert an Undesired byproducts. On the other hamanisylphenylphos-
equilibrating mixture of chiral phosphine diastereomers R*PPhAr Phine reacted cleanly wit@b in the absence of any base to
(R*= chiral alkyl) into a single isomer if pyramidal inversion ~Produce3b and4b (1:1 ratio):*
is faster than crystallizatioh. However, the melting point of

the product phosphine would have to be higher than the 2b CH2C'2_ 3b 4 4b AT_ 3b + 4b
inversion temperature>100°C for typical tertiary phosphines;

activation energy>30 kcal/mol] to achieve AT. More 0-MeOCeH,(Ph)PH 1 : 1 91:1
convenient inversion barriers of 2@5 kcal/mol are expected

for alkoxycarbonylphosphinés.Thus, chiral derivatives R*@ Crystallization of the mixtures Ba4a or of 3b,4b afforded

CPPhAr should undergo AT near room temperature if the crystals consisting of a single dominant diastereomer in each
auxiliary R* favors a single phosphorus configuration in the case according t#P and'H NMR assay at-20 °C, below the
crystal lattice. The alkoxycarbonyl group also provides a built- threshold for pyramidal inversion. The structure 34 was

in means to modify one of the phosphorus substituents and toproven by X-ray crystallography, while the assignmenBbf
remove and recycle the chiral auxiliary, as described below. was based on its eventual transformation R){PAMP as

This is accomplished via P-alkylation followed by hydrolytic described later. The pantolactone series was selected for
cleavage of an intermediate alkoxycarbonylphosphoniunfsalt, detailed optimization in subsequent steps (see below) because
resulting in the formation of a tertiary phosphine with excellent 1b is inexpensive compared tda. However, analogous

enantiomeric purity. transformations in the Whitesell auxiliary-derived series3aa
Several chiral alcohols R*OH were surveyed for crystallinity are facile and provide an excellent route Re)PAMP (see
in the corresponding P-alkoxycarbonylphosphBher 4 and the Supporting Information for details). This series has the
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after 6 weeks), but the process could be performed more only technique found to give acceptable accuracy, and it was
conveniently by warming the solid sample. When a 32:1 used to deduce the diastereomer ratios3bf4db mentioned
mixture was kept at 50C for 22 h, the sample was found to earlier. The results were confirmed by ee assay after hydrolysis
consist of a 99:1 ratio a8b:4b. No further improvement was  and conversion to PAMP borane complex as follows.
detected after an additional 22 h. The diastereomer upgrade The crude acylphosphonium salt was treated witOHHF
occurs without any cost in terms of yield (100% recovery) and at room temperature (3.5 h) to give recoverBiHgantolactone
must take place via the AT phenomenon. We do not know (96% vyield;>99 ee by HPLC assay) anB{)-PAMP, isolated
whether the upgrade involves conversion from one crystalline as the borane complex im98% yield. Starting fronBb that
phase to another. A more likely scenario is that amorpldus  had been “aged” for 2 weeks (48:1 ratio Bl:6b) the Rp)-
precipitates as a contaminant(8%) during the initial crystal- PAMP borane7 was obtained with 9495% ee (HPLC assay
lization of finely divided3b and that the amorphous material on chiral stationary phase). The enantiomeric purity @fas

is slowly converted talb by AT. easily upgraded from 95% ee t09.5% ee after conventional
In solution, purified3b is configurationally stable at20 °C, recrystallization from hexane (84% recovery basedbh In
but it readily re-equilibrates witdb at room temperature (¢ another experimentbb was hydrolyzed in the presence of

ca. 30 min). The crud8b/4b mixture is air- and water-stable  pyridine. This produced a faster reaction (minutes at rt), and
on the time scale of routine aqueous workup and it also survivesthe PAMP was obtained with 97% ee starting fr@mhaving
brief exposure to silica gel. However, the material slowly 98% del® This evidence confirms that the P-alkylation and
decomposes by air oxidation and the key crystallization hydrolysis sequence occurs withl% equilibration of phos-
procedure was therefore carried out under nitrogen using phorus configuration. Prior studies by Imamabal. have
deoxygenated solvents as a precaution to avoid potentialestablished efficient procedures for the conversion7afo
complications that might interfere with efficient crystallization. diPAMP 2b

Cleavage of the P-acyl group 8b and conversion to PAMP The overall conversion from pantolactone to recrystallized
was performed by P-alkylation (GBTf, CH,Cl, —78 to (>99.5% ee) R)-PAMP borane7 was achieved in 74% vyield.
—20°C) to the acyl phosphonium sdb, followed by hydroly- A similar sequence was performed using the Whitesell auxiliary

sis. The alkylation step is crucial because pyramidal inversion via 3aand5a. This series was not optimized in detail, but the
results were comparable: 80% vyield d?){PAMP borane7

o H O ; :i«o ° (98% ee, not recrystallized) frotth. These findings establish
" CH,OTf oL B3 BH, the AT-based synthesis as a practical route to PAMP on a
ol Me 0 o-MeOCeH P multigram scale. The corresponding borane comjglean also
0-MeOCgHy- P, " / \CH3 serve as the starting point for synthesis of other phosphines
Tio® Cetls CHz M€ 7 CeHs having stereogenic phosphorus, according to preliminary re-
5b sults!” Further examples and applications are under investiga-
+ 1b tion.
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extent of “aging”) of the starting sample 8b. This was the precursor of other chiral phosphines.



